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ABSTRACT

In randomized controlled clinical trials with time-to-event endpoints, statistical power is typically
driven by the number of observed events at a specified observation time. The number of subjects
enrolled is prospectively planned to reach the target number of observed events, ensuring that the
sample size is neither too large, which would incur excessive costs, nor too small, which would
delay the observation of the corresponding number of events. In this paper, we examined the
quantitative relationships among enrollment time, individual maximum follow-up time, observation
time, expected number of events, number of subjects enrolled, parametric survival distribution, and
random censoring distribution. We constructed a probability model for observing the events of interest
under various scenarios. Based on this model, each of the four primary study design parameters (the
expected number of observed events, the number of subjects enrolled, the observation time, and the
censoring parameter) can be derived analytically given the other three parameters. Furthermore, we
use simulation studies to evaluate the performance of the proposed analytical approach. Additionally,
an R package, ClinTrialPredict, was developed to facilitate the calculation and geneate simulation
dataset based on the calculated design settings to conduct simulation studies.

Keywords clinical trial prediction · simulation study

1 Introduction

In randomized controlled clinical trials with time-to-event endpoint, statistical power is typically driven by the number of
observed events of interest at a specified observation time, accounting for the fact that a subject’s time-to-event endpoint
may not be fully observed. For instance, in oncology studies, primary endpoint like overall survival or progression-free
survival are frequently used, and the number of deaths or disease progressions is calculated prospectively to achieve a
predefined level of power. Throughout the study, a subject’s event time may be right-censored, due to early dropout or
administrative censoring, prior to the occurrence of the event of interest. Increasing the number of subjects enrolled
can reduce the time needed to reach the target event count. However, increasing enrollment also adds to the study’s
financial burden. Therefore, careful planning of sample size is essential for the success of such trials.

Rubinstein, Gail and Santner [1] investiged the required trial length to assure a desired power, assuming the enrollment
time of subjects follows the Poisson process and both survival time and lost-to-follow up time follows the exponential
distribution. Bagiella and Heitjan [2] generalized the model proposed by Rubinstein, Gail and Santner [1], and
constructed predictive intervals for the trial length needed, using the Bayesian simulation method. Ying [3] extends
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the exponential-distribution based model proposed by Bagiella and Heitjan [2] to a more flexible Weilbull-distribution
based model. Wan [4] [5] proposed a general framework to model the censoring proportions, under the parametric
assumptions for both survival distribution and random censoring distribution. The difficulties of predicting the expected
number of events are: 1) it is a combination of various process, including enrollment at a given period, event occuring,
random censoring, administrative censoring; 2) the probability model varies at different observation timings. Few
studies have discussed the scenarios comprehensively.

In this paper, we examined the quantitative relationships among enrollment time, individual maximum follow-up
time, observation time, expected number of events, number of subjects enrolled, parametric survival distribution, and
random censoring distribution. We constructed a probability model for observing the events of interest under various
scenarios. Based on this model, each of the four primary study design parameters (the expected number of observed
events, the number of subjects enrolled, the observation time, and the censoring parameter) can be derived analytically
given the other three parameters. Furthermore, we use simulation studies to evaluate the performance of the proposed
analytical approach. Additionally, an R package, ClinTrialPredict, was developed to facilitate the calculation and
geneate simulation dataset based on the calculated design settings to conduct simulation studies.

This paper is structured as follows: in section 2, we discussed the general settings and probability model under the
various scenarios; in section 3, we discussed the application of the proposed analytical method for calculating design
parameters; in section 4, we conductd the simulation studies to eveluate the performance of the proposed analytical
method; in section 5, we gave the conclusive discussions.

2 Assumptions and models

2.1 General setting

In this research, we will consider a two-arm parallel group randomized clinical trial with a time-to-event endpoint (e.g.,
overall survival or progression-free survival), the number of events of interest required for interim or final analysis is
determined before the study begins to achieve the pre-specified statistical power. Based on the target number of events
to be observed, the sponsor will determine the number of subjects to enroll. Increasing the number of subjects enrolled
can expedite the time of achieving the target number of events; however, enrolling an excessive number of subjects will
incur substantial costs. Typical questions that sponser are interested when planning the sample size are:

• Question 1: What is the expected number of events to be observed at a given observation time (usually at an
interim or the final analysis)?

• Question 2: How many subjects need to enroll to observe a target number of events at a given observation
time?

• Question 3: How much observation time needed when the target number of events can be oberved?

• Question 4: What is the censoring distribution to achieve a target number of events at a given observation
time?

Such clinical trials with survival endpoint typically include an enrollment period followed by a follow-up period. Each
subject in the trial is assigned a maximum follow-up time. The outcomes for subjects can either be the occurrence of the
event of interests, as demonstrated by Subject 1 and 2 in Figure 1 or being right censored, at a given observation time
(usually at an interim or final analysis). There are three censoring reasons: 1) Subjects are censored due to a random
censoring event, such as being lost to follow-up, prior to the occurrence of the event of interest, as demonstrated by
Subject 3 in Figure 1; 2) subjects are censored because they reach their maximum follow-up time before the event of
interest occurs, as demonstrated by Subject 4 in Figure 1; 3) subjects are censored at the time of interim or final analysis
before the event of interest is observed, as demonstrated by Subject 5 in Figure 1.
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Figure 1: Schematic diagram of right censored subjects in a clinical trial with time-to-event endpoint

2.2 Assumptions and models

To quantitatively answer the questions listed in section 2.1, we will constrcuct the probability model with regard to the
probability of observing the event of interets for the population. Firstly, let random variable A denote the enrollment
time for a subject, and in this paper we will assume enrollment time follows a uniform distribution from 0 to s with
probability density function:

fA(a) =
1

s
, (1)

where s is the enrollment period. Let N0 and N1 denote the number of subjects to be enrolled in control arm and
experimental arm, respevtively.

Secondly, let random variable T denote the survival time for a subject. In this paper, we will assume the proportional
hazard between the two groups. Under the proportional hazard assumption, the hazard function, probability density
function and survival function of survival time are:

h(t|X, θ0) = h0(t|θ0) exp(βX),

f(t|X, θ0) = h0(t|X, θ0) exp (−H0(t|θ0) exp(βX)) ,

S(t|X, θ0) = exp (−H0(t|θ0) exp(βX)) ,

(2)
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where X = 0, 1 denote control arm and experimental arm, respevtively; h0(t|θ0) denote the baseline hazard function
and θ0 denote the parameter vector in baseline hazard function; H0(t) =

∫ t

0
h0(u)du is the cumulative baseline hazard

function at time t; exp(β) denote the hazard ratio between experimental arm and control arm. In the next paragraph of
this paper, we will use fT (.) to denote the probability density function of survival time.

Thirdly, let random variable C denote the random censoring time for a subject, and fC(c|θc) is the probability density
function of random censoring time, where θc denote the parameter vector of the density function. In this paper, we
will assume the random censoring time and survival time are independently distributed, and the distribution of random
censoring time is not conditional on treatment arm X .

Finally, let l denote the observation time since the enrollment start, and m denote the maximum follow-up time for
a subject. Let δ denote the censoring indicator, where δ = 0 indicates the event observed, and δ = 1 indicates right
censoring. Based on the settings in section 2.1, the event is observed if and only if T < min(C, l − A,m). The
essential point to answer the questions in section 2.1 is to derive P (δ = 0|X, θ0, θc, β), the probability of observing an
event given (X, θ0, θc, β). We will consider P (δ = 0|X, θ0, θc, β) in below 5 scenarios:

Scenario 1: Observation time is within the enrollment period and less than the maximum follow-up time for a single
subject (l < s, l < m).

P (δ = 0|X, θ0, θc, β) = P (T ≤ C, T +A ≤ l, A ≤ l)

=

∫ l

0

1

s

∫ l−a

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda
(3)

Scenario 2: Observation time is within the enrollment period and greater or equal than the maximum follow-up time
for a subject (l < s, l ≥ m).

P (δ = 0|X, θ0, θc, β) =P (T ≤ C, T ≤ m,A ≤ l −m) + P (T ≤ C, T +A ≤ l, l −m ≤ A ≤ l)

=

∫ l−m

0

1

s

∫ m

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda+

∫ l

l−m

1

s

∫ l−a

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda

(4)

Scenario 3: Observation time is after the enrollment period and less than the maximum follow-up time for a subject
(l ≥ s, l < m).

P (δ = 0|X, θ0, θc, β) =P (T ≤ C, T +A ≤ l, A ≤ s)

=

∫ s

0

1

s

∫ l−a

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda
(5)

Scenario 4: Observation time l is after the enrollment period and greater or equal than the maximum follow-up time,
but less than the sum of enrollment time and maximum follow-up time (l > s, l > m, l < m+ s).

P (δ = 0|X, θ0, θc, β) =P (T ≤ C, T ≤ m,A ≤ l −m) + P (T ≤ C, T +A ≤ l, l −m ≤ A ≤ s)

=

∫ l−m

0

1

s

∫ m

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda+

∫ s

l−m

1

s

∫ l−a

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda

(6)
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Scenario 5: Observation time l is greater or equal than the sum of enrollment time and maximum follow-up time and
(l ≥ m+ s)

P (δ = 0|X, θ0, θc, β) =P (T ≤ C, T ≤ m,A ≤ s)

=

∫ s

0

1

s

∫ m

0

fT (t|X, θ0, β)

∫ ∞

t

fC(c|θc)dcdtda
(7)

3 Application

In this section, we will assume the parametric form of baseline hazard function of survival time T is based on the
weibull distribution, in which the baseline hazard function is

h0(t|θ0) = h0(t|α0, ν0) = α0ν
−α0
0 tα0−1 (8)

From (2) and (8), the probability density function of survival time T is

fT (t|X, θ0) = fT (t|X,α0, ν0) =
α0

[ν0 exp(Xβ/α0)]α0
tα0−1 exp

(
− tα0

[ν0 exp(Xβ/α0)]α0

)
(9)

Therefore, the survival time T follows the weibull distribution with shape and scale parameters (α0, ν0 exp(Xβ/α0)).
We will assume random censoring time follows an exponential distribution with θ1 = γ. Therefore, the probability
density function of random censoring time C is:

fC(c|θ2) = fC(c|γ) = γ exp(−γc) (10)

The probability of observing the event of interests can be numerically evaluated, by solving tripple integrations in (3),
(4), (5), (6) and (7) for each of the five scenarios.

Let random variable D0 and D1 denote the number of events observed in control group and experimental group,
respectively. At a given time, Di follows a binomial distribution Bin (Ni, P (Ni, P (δ = 0|X = i))). The expected
number of events observed for both arms at a given time is:

E(D0 +D1) = N0 × P (δ = 0|X = 0) +N1 × P (δ = 0|X = 1) (11)

Therefore, question 1 and 2 in section 2.1 can be answered. It is easy to indentify the probability of observing an event
P (δ = 0|X) is a non-decreasing function of observing time l. And we can calculate time needed under the expcted
number of events observed, denoted as l∗:

l∗ = min{l : E(D0 +D1) = N0 × P (δ = 0|X = 0) +N1 × P (δ = 0|X = 1)} (12)

l∗ can be eveluated numerically. Therefore, question 3 in section 2.1 can be answered. Similarly, the random censoring
rate γ can also be eveluated numerically, and question 4 in section 2.1 can be answered. We have developed R package
ClinTrialPredict to implement these calculations and simulate datasets with specified design parameters.
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Example Predict the expected number of events for two-arm study. In a randomized-controlled two-arm clinical
trial with time-to-event endpoint, the number of subjects enrolled in experimental and control arms are N.1 = 100

and N.0100, respectively; The experimental and control arms follow Weilbull(α1 = 2, ν0t = 4) and Weilbull(α1 =

1, ν0t = 5),respectively; The censoring parameter is γ = 1; The enrollment time, maximum follow-up time and
observation time are s = 5, m = 4, l = 6. To calculate the expected number of events, we can use the following R
command:

> design <- TrialPred.TwoArm( N.0=100,N.1=100,d=NULL ,l=6
+ ,alpha0.t = 1,nu0.t=5,alpha1.t=2,nu1.t=4
+ ,gamma.c=1,s=5,m=4)
> str(design)
List of 15
$ N.0 : num 100
$ N.1 : num 100
$ alpha0.t : num 1
$ nu0.t : num 5
$ alpha1.t : num 2
$ nu1.t : num 4
$ gamma.c : num 1
$ s : num 5
$ m : num 4
$ l : num 6
$ P0.delta.0: num 0.158
$ d0 : num 15.8
$ P1.delta.0: num 0.0807
$ d1 : num 8.07
$ d : num 23.9

The expected number of events is 23.9. We can also use the following R command to simulate the random samples
based on the design settings:

> ds <- SimData.TwoArm(design2=design ,seed=1234,nsim=10000)$ dataset
> head(ds)

sim subject a t c event arm
1 1 1 3.621494 10.8708094 1.7387541 0 0
2 1 2 3.085002 2.3716697 1.2847665 0 0
3 1 3 3.852667 2.4774300 0.6059561 0 0
4 1 4 4.293425 2.3629994 0.9542372 0 0
5 1 5 4.317030 0.7487953 2.0225852 1 0
6 1 6 2.186175 2.2290095 0.1858141 0 0

sum(ds$event) / max(ds$sim)
[1] 23.9276

In the simulated dataset, variable nsim is the number of simulated dataset; variable subject is the subject indentifier
within each simulated dataset and arm; variables a, t, c are the time of enrollment, survival time and censoring time,
respectively; variable event is the event indicator(event = 1 is the event observed; event = 0 is the right censoring);
variable arm is the treatment arm indicator. The average number of events in the 10000 simulated datasets is 23.9276.

6



A PREPRINT - NOVEMBER 17, 2024

4 Simulation study

In this section, we conducted simulation study to assess the robustness of the analytical method in section 3 and 4,
under different settings. We will consider a hypothetical two-arm randomized control clinical trial. The enrollment
time s is set to 24 months; The single subject’s maximum follow-up time m is evaluated at 6 months and 24 months,
separately. For baseline hazard function, we will evaluate α0 = 0.8, 1, 1.2 separately, representing the baseline hazard
is decreasing, constant and increasing; Hazard ratio between two arms is evaluated at 0.8, 1, 1.5; The random censoring
parameter γ is evaluated at 0.1, 0.2, 0.3. All simulations are based on 10000 runs.

Table 1 and 2 compares the expected number of events observed from the analytical calculation with the mean of number
of events observed from simulation datasets, under difference design settings. In table 1, the enrollment time s is less
than the maximum follow-up time. While in table 2, the enrollment time is longer than the maximum follow-up time.
The observation time l equals 8,13,20 in table 1 represents the Scenario 1, 4, and 5, respectively. And the observation
time l equals 8,13,20 in table 1 represents the Scenario 1, 3, and 4, respectively. The results based on the analytical
method and simulation method are consistent.

In table 3, the observation time is calculated based on the analytical method, and the mean of number of events
observed from simulation datasets based on the calculated observation time is compared with desigated number of
events observed. The results based on the analytical method and simulation method are consistent.

In table 4, the censoring parameter γ is calculated based on the anaytical method, and the mean of number of events
observed from simulation datasets based on the calculated censoring parameter γ is compared with desigated number of
events observed. The results based on the analytical method and simulation method are consistent.
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Table 1: Comparing the expected number of events with mean number of events in simulation study (N.0 = 200,
N.1 = 200, s = 12, m = 6)

Baseline hazard of
survival time

Hazard ratio
(exp(β))

Censoring rate
(γ)

l=8 l=13 l=20
E(D) Mean(D) E(D) Mean(D) E(D) Mean(D)

Weilbull(0.8, 20) 0.8 0.1 54.0 54.0 98.4 98.5 110.8 110.9
0.2 46.2 46.2 82.2 82.3 90.6 90.7
0.3 40.3 40.3 70.3 70.3 76.0 76.0

1.0 0.1 48.9 48.9 89.2 89.3 100.6 100.8
0.2 41.7 41.7 74.4 74.4 82.1 82.2
0.3 36.3 36.3 63.5 63.5 68.7 68.8

1.5 0.1 41.4 41.5 75.8 75.9 85.7 85.8
0.2 35.3 35.3 63.1 63.1 69.8 69.8
0.3 30.7 30.7 53.7 53.8 58.3 58.3

Weibull(1, 20) 0.8 0.1 39.8 39.9 75.4 75.5 87.5 87.6
0.2 32.9 33.0 60.8 60.8 68.8 68.9
0.3 27.8 27.8 50.2 50.2 55.6 55.7

1.0 0.1 35.9 36.0 68.1 68.2 79.1 79.3
0.2 29.6 29.7 54.8 54.8 62.1 62.2
0.3 25.0 25.0 45.1 45.2 50.1 50.2

1.5 0.1 30.3 30.4 57.6 57.7 67.1 67.2
0.2 25.0 25.0 46.3 46.3 52.6 52.6
0.3 21.1 21.1 38.1 38.1 42.4 42.4

Weilbull(1.2, 20) 0.8 0.1 29.5 29.6 57.8 57.8 68.9 69.0
0.2 23.7 23.7 45.1 45.1 52.5 52.5
0.3 19.4 19.4 36.1 36.1 41.0 41.1

1.0 0.1 26.5 26.6 52.0 52.0 62.1 62.2
0.2 21.2 21.3 40.5 40.5 47.2 47.2
0.3 17.4 17.4 32.4 32.4 36.9 37.0

1.5 0.1 22.3 22.4 43.9 43.9 52.5 52.5
0.2 17.9 17.9 34.2 34.2 39.9 39.9
0.3 14.6 14.7 27.3 27.3 31.1 31.2
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Table 2: Comparing the expected number of events with mean number of events in simulation study (N.0 = 200,
N.1 = 200, s = 12, m = 18)

Baseline hazard of
survival time

Hazard ratio
(exp(β))

Censoring rate
(γ)

l=8 l=13 l=20
E(D) Mean(D) E(D) Mean(D) E(D) Mean(D)

Weilbull(0.8, 20) 0.8 0.1 55.2 55.2 109.7 109.8 143.1 143.2
0.2 46.8 46.9 87.4 87.5 103.9 104.1
0.3 40.6 40.6 72.7 72.7 81.8 81.9

1.0 0.1 50.0 50.0 100.0 100.0 131.5 131.7
0.2 42.3 42.3 79.3 79.4 94.8 94.9
0.3 36.6 36.6 65.8 65.8 74.2 74.3

1.5 0.1 42.4 42.5 85.4 85.5 113.5 113.6
0.2 35.9 35.9 67.5 67.5 81.1 81.2
0.3 31.0 31.0 55.8 55.8 63.2 63.2

Weibull(1, 20) 0.8 0.1 41.1 41.2 88.2 88.4 124.9 125.0
0.2 33.6 33.6 66.6 66.7 84.1 84.2
0.3 28.2 28.2 52.9 52.9 62.2 62.3

1.0 0.1 37.1 37.2 80.1 80.3 114.5 114.7
0.2 30.3 30.3 60.3 60.3 76.5 76.6
0.3 25.3 25.3 47.7 47.7 56.3 56.4

1.5 0.1 31.4 31.5 68.2 68.3 98.6 98.7
0.2 25.6 25.6 51.1 51.1 65.3 65.4
0.3 21.3 21.4 40.3 40.4 47.8 47.9

Weilbull(1.2, 20) 0.8 0.1 30.9 31.0 71.5 71.6 110.0 110.1
0.2 24.4 24.4 51.4 51.3 69.1 69.1
0.3 19.8 19.8 39.0 39.0 48.1 48.2

1.0 0.1 27.8 27.8 64.8 64.8 100.7 100.8
0.2 21.9 21.9 46.4 46.3 62.7 62.8
0.3 17.7 17.8 35.1 35.1 43.5 43.6

1.5 0.1 23.4 23.5 55.1 55.1 86.5 86.6
0.2 18.4 18.5 39.2 39.2 53.5 53.5
0.3 14.9 15.0 29.6 29.6 36.9 37.0
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Table 3: Comparing the expected number of events with mean number of events in simulation study, based on the
calculated observation time (N.0 = 200, N.1 = 200)

Maximum
follow-up time

Enrollment
time (s)

Baseline hazard of
survival time Hazard Ratio Censoring rate

γ
E(D) Observation time Mean(D)

6 12 Weibull(0.8, 20) 0.8 0.1 20 4.18 20.1

6 12 Weibull(0.8, 20) 0.8 0.1 50 7.56 50.0

6 12 Weibull(0.8, 20) 0.8 0.1 100 13.28 100.1

18 12 Weibull(1.2, 20) 1.2 0.1 20 7.00 20.1

18 12 Weibull(1.2, 20) 1.2 0.1 50 11.63 50.0

18 12 Weibull(1.2, 20) 1.2 0.1 100 22.79 100.1

Table 4: Comparing the expected number of events with mean number of events in simulation study, based on the
calculated censoring rate (N.0 = 200, N.1 = 200)

Maximum
follow-up time

Enrollment
time (s)

Baseline hazard of
survival time Hazard Ratio Observation time

γ
E(D) Censoring rate

γ
Mean(D)

6 12 Weibull(0.8, 20) 0.8 3 10 0.31 10.0

6 12 Weibull(0.8, 20) 0.8 8 50 0.15 49.9

6 12 Weibull(0.8, 20) 0.8 15 60 0.45 60.2

18 12 Weibull(1.2, 20) 1.2 5 8 0.27 8.0

18 12 Weibull(1.2, 20) 1.2 15 40 0.27 39.9

18 12 Weibull(1.2, 20) 1.2 20 70 0.16 69.5
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